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We apply percolation theory to a recently proposed measure of fragmentation F for social networks. The
measure F is defined as the ratio between the number of pairs of nodes that are not connected in the fragmented
network after removing a fraction q of nodes and the total number of pairs in the original fully connected
network. We compare F with the traditional measure used in percolation theory, P�, the fraction of nodes in the
largest cluster relative to the total number of nodes. Using both analytical and numerical methods from
percolation, we study Erdős-Rényi and scale-free networks under various types of node removal strategies. The
removal strategies are random removal, high degree removal, and high betweenness centrality removal. We
find that for a network obtained after removal �all strategies� of a fraction q of nodes above percolation
threshold, P���1−F�1/2. For fixed P� and close to percolation threshold �q=qc�, we show that 1−F better
reflects the actual fragmentation. Close to qc, for a given P�, 1−F has a broad distribution and it is thus
possible to improve the fragmentation of the network. We also study and compare the fragmentation measure
F and the percolation measure P� for a real social network of workplaces linked by the households of the
employees and find similar results.
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I. INTRODUCTION

Many physical, sociological, and biological systems are
represented by complex networks �1–17�. One of the impor-
tant problems in complex networks is the fragmentation of
networks �6–12�. In this problem one studies the statistical
properties of the fragmented networks after removing nodes
�or links� from the original fully connected network using a
certain strategy. Many different removal strategies have been
developed for various purposes, e.g., mimicking the real-
world network failures, improving the effectiveness of net-
work disintegration, etc. Examples include random removal
�RR� strategy, the high degree removal �HDR� strategy, and
the high betweenness centrality removal strategy �HBR�
�9,18–21�. Note that the best strategy for fragmentation
�minimum nodes removal� is also the best for immunization
since it represents the minimum number of nodes or links
needed to be immunized so that the epidemic cannot spread
in the network.

Recently, a new measure of fragmentation has been de-
veloped in social network studies �22�. Given a fully con-
nected network of N nodes which is fragmented into separate
clusters �23� by removing m nodes following a certain strat-
egy, we define q�m /N as the concentration of nodes re-
moved and p�1−q as the concentration of existing nodes.
The degree of fragmentation F of the network is defined as
the ratio between the number of pairs of nodes that are not
connected in the fragmented network and the total number of
pairs in the original fully connected network. Suppose that
after removal there are n clusters in the fragmented network,
since all members of a cluster are, by definition, mutually
reachable, the measure F can be written as follows �22�:

F � 1 −
� j=1

n Nj�Nj − 1�
N�N − 1�

� 1 − C . �1�

Here, Nj is the number of nodes in cluster j, n is the number
of clusters in the fragmented network, and N is the number
of nodes in the original fully connected network. For an un-
damaged network, F=0. For a totally fragmented network,
F=1. The quantity C defined in Eq. �1� can be regarded as
the “connectivity” of the network. When C=1 the network is
fully connected while for C=0 it is fully fragmented.

In this paper, we study the statistical behavior of F�1
−C using both analytical and numerical methods and relate it
to the traditional measure of fragmentation, the relative size
of the largest cluster P� used in percolation theory. In this
way, we are able to obtain analytical results for the fragmen-
tation F of networks. We study three removal strategies: the
random removal (RR) strategy which removes randomly se-
lected nodes, the high degree removal (HDR) strategy which
targets and removes nodes with the highest degree, and the
high betweenness centrality removal (HBR) strategy which
targets and removes nodes with the highest betweenness cen-
trality. The HDR �or HBR� strategies first remove the node
with the highest degree �or the highest betweenness central-
ity�, and then the second highest, and so on. These three
strategies are commonly used in models representing random
and targeted attacks in real-world networks �1,6–8,20�.

II. THEORY

Traditionally, in analogy to percolation, physicists de-
scribe the connectivity of a fragmented network by the ratio
P��N� /N �called the incipient order parameter� between
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the largest cluster size N� �called the infinite cluster� and
N.Many properties have been derived for this measure
�6,24,25�. For example, in random networks, P� undergoes a
second-order phase transition at a threshold pc. Below pc, P�

is zero for N→�, while for p� pc, P� is finite. This occurs
for both RR and HDR in random networks and lattice net-
works �6–8,24,25�. The threshold parameter pc depends on
the degree distribution, the network topology, and the re-
moval strategy �6–8,24,25�. The specific way that P� ap-
proaches zero at pc depends on the network topology and
removal strategy but not on details such as pc. In scale-free
networks, where the degree distribution p�k��k−� and 2
���3, it has been found that pc→0 for RR strategy �6�
while pc is very high for HDR strategy �7,8� and for HBR
strategy �20�. For ��3 and RR, pc is finite.

Next, we show simulation results of removing nodes in
all strategies �RR, HDR, and HBR� on ER and scale free

networks. Figure 1 shows the behavior of C̄ and P̄�, the
average of C��1−F� and P� over 1000 realizations, vs q for
Erdős-Rényi �ER� and scale-free �SF� networks with RR

�Figs. 1�a� and 1�b��, HDR �Figs. 1�c� and 1�d��, and HBR
�Figs. 1�e� and 1�f�� strategies. As seen in Fig. 1�a�, the net-
work becomes more fragmented when q increases and both

measures drop sharply at qc=1− pc. Note that C̄ shows a

transition similar to P̄� at p= pc; however, above qc, C̄ be-

comes more flat in contrast to P̄�, indicating the effect of
connectivity in the small clusters which do not affect P�.

In contrast to Fig. 1�a�, the transition in Fig. 1�b� is not as

sharp and therefore C̄ and P̄� do not show a collapse to-
gether. The reason is that for �=2.5 there is no transition at

q�1 �6� and for �=3.5, P̄� falls much less sharply com-
pared to ER �26�. For HDR shown in Figs. 1�c� and 1�d�, the
transition is again sharp since after removing high degree
nodes, the network becomes similar to ER networks, which
do not have high degree nodes �8�. A similar behavior is seen
for HBR shown in Figs. 1�e� and 1�f� due to the known high
correlation between high degree nodes and high betweenness
centrality nodes �20�.

Following percolation theory, Eq. �1� can be written as
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FIG. 1. �Color online� The be-

havior of C̄ and P̄� vs q on ER
and SF networks. For ER net-
works, N=200 000 and �k	=3.
For SF networks, N=80 000. The
graphs are �a� RR strategy on ER
networks, �b� RR strategy on SF
networks, �c� HDR strategy on ER
networks, �d� HDR strategy on SF
networks, �e� HBR strategy on ER
networks, and �f� HBR strategy on
SF networks.
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C � 1 − F �
� j=1

n Nj�Nj − 1�
N�N − 1�

�
� j=1

n Nj
2 − � j=1

n Nj

N2

=
� j=1

n Nj
2

N2 −
1

N
= P�

2 +
S − 1

N
. �2�

To obtain Eq. �2�, we denote j=1 as the largest cluster and
thus N1

2 /N2� P�
2 . The sum � j=2

n Nj
2 /N�S, where S is the

mean cluster size of finite clusters �24,25�. Since S is of order
of ln N, �S−1� /N can be neglected for large N. Therefore we
expect that P� and C have the relationship P��C1/2 when
p� pc �but not too close to pc�. When p� pc, the infinite
cluster loses its dominance in the system with P�

� ln�N� /N→0 and both terms in Eq. �2� are roughly in the

same order for large N �8�. Here significant variations be-
tween P� and C1/2 are expected, as indeed seen in Fig. 2.

III. SIMULATIONS

We test by simulations the relationship C� P�
2 derived for

p� pc in Eq. �2�. In Fig. 2�a� we plot P� vs C1/2 for RR
strategy in ER networks and for several values of p. As pre-
dicted by Eq. �2�, the plot of P� vs C1/2 yields a linear rela-
tionship with slope equal to 1 when p� pc=1/ �k	=1/3. The
range of P� and C1/2 for p=0.4 is due to the variation of P�

for a given p and the same variation appears for C1/2 show-
ing that the infinite cluster dominates and Eq. �2� is valid.
However, when p drops close to pc=1/3, the system ap-
proaches criticality and the one-to-one correspondence be-
tween C1/2 and P� is not as strong. This variation is attrib-
uted to the presence of clusters other than the infinite one,
which influence C but not P�.
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FIG. 2. �Color online� Rela-
tionship between C1/2 and P� for
ER and SF networks with system
size N=50 000. For ER networks,
the average degree �k	=3, and for
SF networks, �=2.5 and 3.5. The
graphs are �a� RR strategy on ER
networks, �b� RR strategy on SF
networks, �c� HDR strategy on ER
networks, �d� HDR strategy on SF
networks, �e� HBR strategy on ER
networks, and �f� HBR strategy on
SF networks.
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Similar behavior is observed for RR strategy in SF net-
works with �=3.5 shown in Fig. 2�b�. For �=3.5, the varia-
tion in C1/2 emerges close to pc=0.2. However, for �=2.5,
percolation theory suggests that pc approaches 0 for large
systems. As a result, no significant variation is observed even
when P� is as small as 5�10−4. This observation supports
that the SF networks with ��3 are quite robust in sustaining
its infinite cluster against random removal �6�. Figures
2�c�–2�f� show the results for HDR and HBR strategies in
ER and SF networks. For these targeted strategies, the varia-
tion of C1/2 and P� shows up at significantly higher p com-
pared to the random case, indicating that the infinite cluster
breaks down easier under HDR and HBR attacks for both ER
and SF networks, as seen also in Fig. 1. At this point, the SF
network with �=2.5 becomes no longer as robust as in the
random case, as can be clearly observed in the large variation
at P��0.05.

To further investigate the characteristics of the variation
of C for a given P�, we remove nodes until P� equal to a
certain value and calculate the probability distributions

p�C / C̄� vs C / C̄. The results are plotted in Fig. 3. In this case,
C*, the most probable value of C, is determined by the fixed
infinite cluster size P� with C*� P�

2 , and the broadness of
p�C� comes from presence of clusters other than the infinite
one. Because the largest cluster size is fixed, the upper cutoff
of p�C� emerges due to the limitation on the sizes of other
clusters that by definition must be smaller than the largest
cluster. For the RR strategy, the broadness of p�C� for the ER
network is bigger than that of SF networks at the same P�,
especially for �=2.5 where the system is always high above
criticality and the variation is relatively small. On the con-
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FIG. 4. �Color online� The dependence of p�C� on the system
size N with p= pc for �a� before scaling and �b� after scaling. Simu-
lations are performed on ER networks with �k	=3.
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FIG. 3. �Color online� Prob-

ability distributions p�C / C̄� vs

C / C̄ for several values of P� and
for ER networks with �k	=3, N
=200 000, and SF networks with
N=80 000 and �=2.5 and 3.5. �a�
RR strategy on ER networks, �b�
RR strategy on SF networks, �c�
HDR strategy on ER networks,
and �d� HDR strategy on SF
networks.
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trary, for the HDR and HBR strategies, the broadness of p�C�
for ER and SF networks are of the same order due to the fact
that for HDR and HBR, pc is also finite for �=2.5. This
observation is consistent with the results shown in Fig. 2.

Now we focus on the dependence of p�C� on the system
size N at pc �Fig. 4�. From percolation theory and for ER
under RR strategy, the infinite cluster size N� at criticality
behaves as �27,28�

N� � N2/3. �3�

Since C follows similar behavior as N� at criticality, we ex-
pect C for p= pc to behave as

C � 1 − F � �N�/N�2 � N−2/3. �4�

Thus we expect the probability distribution p�C� with p= pc

to scale as

p�C� = N2/3g�CN2/3� , �5�

where g is a scaling function.
Figure 4�b� supports this scaling relationship. We calcu-

late p�C� for RR strategy at criticality on ER networks with
N values of 50 000, 100 000, 200 000, and �k	=3 �shown in
Fig. 4�a��, and �34� find a good collapse when plotted �Fig.
4�b�� using the scaling form of Eq. �5�.

IV. REAL NETWORKS

The ER networks and the SF networks that we have been
studying are a random ensemble of networks which are only
determined by their degree distribution. It is known that
many real networks often exhibit important structural prop-
erties relevant for percolation properties such as a high level
of clustering, assortativity, and fractality that random net-
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FIG. 5. �Color online� Proper-
ties of the Swedish network of
workplaces. �a� The cumulative
degree distribution �showing �
=2.6�. �b� The distribution of kn,
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nodes having degree k. �c� The cu-
mulative distribution of clustering
coefficient c. �d� Number of nodes
in shell ks. �e� Size of largest and
second largest cluster in each k
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works do not exhibit �13,29�. We therefore test our results
about the relation between C and P� on an example of a
large real social network. The network we use is extracted
from a data set obtained from Statistics Sweden �30� and
consists of all geographical workplaces in Sweden that can
be linked with each other by having at least one employee
from each workplace sharing the same household. House-
hold is defined as a married couple or a couple having kids
together that are living in the same flat or house. Unmarried
couples without kids and other individuals sharing a house-
hold are not registered in the data set as households. This
kind of network has been shown to be of importance for the
spreading of influenza �31� and are also likely to be impor-
tant for spreading information and rumors in society. The
network consists of 310 136 nodes �workplaces� and 906 260
links �employees sharing the same households� and, as
shown in Fig. 5�a�, is approximately a SF network with �
�2.6 and an exponential cutoff. The network shows almost
no degree-degree correlation �assortativity� �Fig. 5�b��. How-
ever, the workplace network clustering coefficient c is sig-
nificantly higher than that of a random SF network with
same � and N �Fig. 5�c��. The average of c is 0.048 for the
workplace network vs 3.2�10−4 for the random SF net-
works, which is consistent with the earlier social network
studies �32,33�. Figure 5�d� shows the node distribution n�ks�
of k shell �ks� in the network compared to that of a random
SF network with the same � and �k	 �34�. The one-shell is
obtained by pruning all nodes with degree 1 �or less� away
from the network until no more such nodes remain. A similar
procedure is performed recursively for larger degrees to get
other k shells. It is seen that in the workplace network there
exist significantly more shells and the large shells are more
occupied compared to random SF networks. The distribution
n�ks� shows a power-law behavior with slope −1.52. This
indicates the structure of this real network. Figure 5�e� shows
the crust total size, the largest cluster size, and the second
largest cluster size as a function of shell ks. The k crust is
defined as the union of all shells with indices smaller or
equal to k. It is seen that the largest cluster has two transi-
tions. One around ks=5 and the other at ks=27. At ks�5, the
largest cluster increases from zero to a finite fraction of the
network. This transition is related to the HDR seen in Fig.
6�d� �see also �8��. The second transition at ks=27 defines the
nucleus of the workplace network which includes about 100
nodes �see Fig. 5�d�, n�28��100� which are well connected
to each other. The jump of the largest cluster from ks=27 to
ks=28 from 2.8�105 nodes to 3.1�105 nodes �i.e., 3�104

nodes� is due to nodes which are connected only to the
nucleus. These nodes are called dendrites. Figure 5�e� is very
similar to the Medusa model �34� suggested for the AS to-
pology of the Internet. Figures 6�a� and 6�b� show simulation
results for several values of p for P� vs C1/2. The curves are
linear, similar to Fig. 2 for our model networks. Moreover,

Figs. 6�c� and 6�d� show that C̄1/2 and P̄� are almost identical
above the criticality threshold pc for a typical configuration
after both RR and HDR. For p below criticality, differences
appear which are especially obvious for HDR strategy where

qc=1− pc is relatively small. While P̄� rapidly decreases to a
very small value �below 10−5�, a plateau shows up in the
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FIG. 6. �Color online� P� vs C1/2 for �a� RR strategy and �b�
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=310 136 nodes.
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curve of C1/2 due to the influence of the small clusters.

V. SUMMARY

In summary, we study the measure for fragmentation F
�1−C proposed in social sciences and relate it to the tradi-
tional P� used in physics in percolation theory. For p above
criticality, C and P� are highly correlated and C� P�

2 . Close
to criticality, for p	 pc and below pc, variations between C
and P� emerge due to the presence of the small clusters. For
systems close to or below criticality, F gives a better measure
for fragmentation of the whole system compared to P�. We

study the probability distribution p�C� for a given P� and
find that p�C� at p= pc obeys the scaling relationship p�C�
=N2/3g�CN2/3� for both RR strategy on ER network, and for
HDR on scale-free networks.
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